Telegram Group & Telegram Channel
Causal Inference - как делать правильные выводы из данных

Наверное, вы не раз слышали о том, что корреляция не доказывает причинно-следственную связь.
Простых иллюстраций в реальной жизни много - например, сон в уличной обуви коррелирует с головной болью на следующее утро, но это не значит, что ботинки влияют на мозг 😁

Когда вы читаете о каких-то результатах исследований (особенно в новостях), в них могут быть ошибки как статистического характера, так и неправильная интерпретация результатов (учёные могут ошибаться или обманывать, шок).

Этот феномен играет роль и в ML, например, в рекомендательных системах. Часть алгоритмов уязвима к ситуации, когда некоторые объекты в данных встречаются сильно чаще других, у них больше положительных откликов, и алгоритмы начинают выбирать популярные объекты для пользователя просто из-за их популярности, а это плохо.

Вы можете очень сильно прокачать своё критическое мышление и способность делать правильные выводы, посмотрев хотя бы треть этого прекрасного плейлиста про Сausal Inference. Это короткие видео, в которых автор подробно объясняет основы этой области. Требуется базовая грамотность в теории вероятностей. Добавляйте себе в закладки, запишите просмотр в цели на 2023 ✍️

Посмотрев, вы поймёте, почему надёжный вывод можно сделать только в условиях эксперимента с фактором случайности, в чём математический смысл "поправок" в исследованиях, и почему даже с ними вывод не становится надёжным.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/51
Create:
Last Update:

Causal Inference - как делать правильные выводы из данных

Наверное, вы не раз слышали о том, что корреляция не доказывает причинно-следственную связь.
Простых иллюстраций в реальной жизни много - например, сон в уличной обуви коррелирует с головной болью на следующее утро, но это не значит, что ботинки влияют на мозг 😁

Когда вы читаете о каких-то результатах исследований (особенно в новостях), в них могут быть ошибки как статистического характера, так и неправильная интерпретация результатов (учёные могут ошибаться или обманывать, шок).

Этот феномен играет роль и в ML, например, в рекомендательных системах. Часть алгоритмов уязвима к ситуации, когда некоторые объекты в данных встречаются сильно чаще других, у них больше положительных откликов, и алгоритмы начинают выбирать популярные объекты для пользователя просто из-за их популярности, а это плохо.

Вы можете очень сильно прокачать своё критическое мышление и способность делать правильные выводы, посмотрев хотя бы треть этого прекрасного плейлиста про Сausal Inference. Это короткие видео, в которых автор подробно объясняет основы этой области. Требуется базовая грамотность в теории вероятностей. Добавляйте себе в закладки, запишите просмотр в цели на 2023 ✍️

Посмотрев, вы поймёте, почему надёжный вывод можно сделать только в условиях эксперимента с фактором случайности, в чём математический смысл "поправок" в исследованиях, и почему даже с ними вывод не становится надёжным.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/knowledge_accumulator/51

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram today rolling out an update which brings with it several new features.The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. The update also adds interactive emoji. When you send one of the select animated emoji in chat, you can now tap on it to initiate a full screen animation. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations. This is then visible to you or anyone else who's also present in chat at the moment. The animations are also accompanied by vibrations.

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

Knowledge Accumulator from ru


Telegram Knowledge Accumulator
FROM USA